Spontaneous Formation of Fractal Aggregates of Au Nanoparticles in Epoxy-Siloxane Films and Their Application as Substrates for NIR Surface Enhanced Raman Spectroscopy

نویسنده

  • Dinesh K. Basker
چکیده

We present a facile, inexpensive route to free-standing, thermo-mechanically robust and flexible epoxy-siloxane substrates embedded with fractal aggregates of Au nanoparticles, and demonstrate their efficiency as substrates for surface enhanced Raman spectroscopy (SERS) at NIR wavelengths. The metallodielectric films are prepared by generating Au nanoparticles through the in-situ reduction of gold (III) chloride trihydrate in epoxypropoxypropyl terminated polydimethyl siloxane (EDMS). The metal nanoparticles spontaneously aggregate into fractal structures in the colloid, which could then be drop-cast onto a substrate. Subsequent UV-initiated cationic polymerization of epoxide moieties in EDMS transforms the fluid colloid into a thin, free-standing film, which contains a dense distribution of fractal aggregates of Au nanoparticles. We used electron and optical microscopy as well as UV–Vis–NIR spectrometry to monitor the evolution of nanoparticles and to optically and structurally characterize the resulting films. Raman spectroscopy of the chromophore Eosin Y adsorbed onto the metallodielectric films showed that they are excellent SERS substrates at NIR excitation with an enhancement factor of ~9.3 × 103.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles

The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...

متن کامل

Biosensing Based on Surface-Enhanced Raman Spectroscopy by Using Metal Nanoparticles

Surface-enhanced Raman spectroscopy (SERS) is a promising tool in the analytical science because it provides good selectivity and sensitivity without the labeling process required by fluorescence detection. This technique consists of locating the target analyte on nanometer range of roughed Au-nanoparticles. The presence of the metal nanoparticles provides a tremendous enhancement to the result...

متن کامل

Molecular Diagnosis of Plasma Phenylalanine in Neonates with Phenylketonuria Disease Using Biological Sensors Based on Surface-Enhanced Raman Spectroscopy (SERS)

In this study, silver nanoparticles were chemically synthesized and deposited on glass substrates using a reducing agent of sucrose, at 50°C. Different characterizations including atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), and Raman spectroscopy were obtained to study silvery substrates. Then, the silvery substrates were used as the SERS substrates to de...

متن کامل

Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates.

Au and Ag nanoshells are investigated as substrates for surface-enhanced Raman scattering (SERS). We find that SERS enhancements on nanoshell films are dramatically different from those observed on colloidal aggregates, specifically that the Raman enhancement follows the plasmon resonance of the individual nanoparticles. Comparative finite difference time domain calculations of fields at the su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017